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Consider the case of an experimenter who is interested in testing the

riypothesis that t levels of an independent variable have an identical. effect

on the dependent variable values of the units in a population. Given that

he has unbiased estimates of treatment effects, the experimenter should choose

for a fixed sample size a procedure that provides as statistically powerful a

test as possible. The purposes of the present paper are to discuss the rela-

tive power of three possible designs under the condition that data are to be

analyzed by nonparametric techniques, to compare the power of each nonparametric

technique to the power of its parametric analogue, and to compare the relative

powers using nonparametric techniques to; the better known relative powers using

parametric techniques. The three nonparametric techniques are the Kruskil-

Wallis test on data where experimental units have been simple random assigned

to levels of the independent variable, Friedman's rank ANOVA on data in a

randomized blocks design, and a nonparametric analysis of covariance (ANCOVA)

which has recently been proposed by Quade (1967). The parametric analogues are

respectively; one way analysis of variance (ANOVA), two way ANOVA, and para-

metric ANCOVA. Since the nonparametric tests are based on large sample approxi-

mations, the goodness of their fit for small samples is also of concern. State-

ments of asymptotic relative efficiency and imprecision are reviewed as suggestive

of the relativl small sample powers of the designs and statistics investigated.

Results of a Uonte Carlo investigation are provided to speak more directly to the

concern of small sample power and to provide data on goodness of fit.

In a 1970 AEPA paper (Porter and McSweeney, 1970) we empirically investi-

gated the small sample goodness of fit and power of the Kruskal-Wallis and Friedman

tests, but did not provide empirical q's and powers for their parametric analogues.
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Our 1970 AERA paper also investigated the effects of analyzing data in randomized

block form with a Kruskal-Wallis test, and the effects of using Friedman's test

on data wnere blocks were formed after initial random assignment. Here we extend

last year's work by considering Quade's nonparametric ANCOVA, comparing the

small sample properties of nonparametric ANCOVA to our last year's data on

Kruskal-Wallis and Friedman's tests, and by presenting empirical results for

all three parametric analogues. Partial motivation for our study is provided

by Quade (1967, p. 1198) when in reference to his nonparametric ANCOVA he states

"Another disadvantage of the rank method at Lhis time appears to be its unknown

behavior for small samples, say with less than five to ten observations per

group." Further motivation is provided by the apparent lack of information in

the literature about the small sample power of different experimental designs

for testing a common hypothesis when nonparametric tests are used. By com-

parison considerable attention has been given to study of the relative small

sample power among those same experimental designs when parametric tents are

used. In another l571 AERA paper (McSweeney and Porter, 1971) we further

extend our considerations of small sample goodness of fit and power to include

a modification of Quade's nonparametric rank ANCOVA and a nonparametric index

of response which we propose.

When an experimenter is interested in testing the above stated hypothesis

that t levels of an independent variable have an identical effect on the depen-

dent variable values of the units in a population, he can proceed by obtaining

a simple random sample from thy population of interest and then use simple ran-

dom nanignment of experimental units to levels of the independent variable.

Given the assumptions of normality, homoscedasticity and independence he can

analyze his data by a one-way ANOVA. However, if anyecedent information is

available on a concomitant variable and if the concomitant variable has a
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linear relationship with the dependent variable, ANCOVA will probably provide

a more powerful test. The well known assumptions for parametric ANCOVA are

conditional normality, conditional homoscedasticity, independence, and parallel

treatment group regression lines.

Another method of using antecedent information on a concomitant variable

in an attempt to improve statistical power is to employ a randomized blocks

design. Pingel (1969) defines two types of randomized blocks design and com-

pares their precisions when data are analyzed by a two way ANOVA. Unfortunately,

the more precise method involves forming blocks on the population distribution

of the concomitant variable and thus requires more information than is typically

available. The other type of randomized blocks design requires a random sample

of tb units from the population, which are then pot in rank order on the basis

of their concomitant variable values. Then the experimenter randomly assigns

one unit to each level of the independent variable from the first set of t

units, one unit to each level from the second set of t units, and so on until

the tb observations have all been assigned. The second type of randomized

blocks design is the one investigated in the present study because of its

greater feasibility for an experimenter. The assumptions for two way ANOVA

on data in a randomized blocks design are normality, homoscedasticity, inde-

pendence, and no block by treatment interaction.

Over the past several years there has been some debate as to the general

utility of nonpara'etric techniques. The robustness of the analysis of variance

F test (Box, 1955) has been offered as an argument in favor of its use, even

when the assumptions of normality and homoscedasticity are violated. This argu-

ment emphasizes the goodness-of-fit of the F test statistic tai the theoretical

null distribution ever when the assumptions for the F test are seriously in error.

Its principal concern is with the size of the actual Type I error. Despite the
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good control over Type I error given by the F test when parametric assumptions

are violated, nonparametric tests for the same designs are generally more power-

ful than their parametric counterparts in these circumstances (Brad?./, 1968).

Therefore, the Kruskal-Wallis, Friedman's ANOVA, and Quade's nonparametric ANCOVA

are to be preferred over their parametric counterparts when parametric assumptions

have been violated.

Both the Kruskal-Wallis and the Friedman test statistics operate on ranks,

but they differ in their methods of ranking. When calculating a Kruskal-Wallis

test statistic the units are ranked 1 through tb on "le basis of their dependent

variable values. The Friedman test statistic requires that the units within each

block be ranked 1 through t on the basis of their dependent variable values. The

Kruskal-Wallis test statistic is then defined

t

H= 12 E 3(tb+1),
tb2(tb +l)

and the Friedman test statistic is defined

2 12 t
E R, - 3b(t+1),

Xr tb(t+1)
Tull

where RTdenotes the sum of the b ranks under the Tth level of the independent

variable. The assumptions for the Kruskal-Wallis test are independence of units

and measurement of the dependent variable on at least ordinal scale. The assump-

tions for the Friedman test are independence among blocks and that within each

block the dependant varlaWe is measured on at least an ordinal scale.

Because the nonparametric ANCOVA proposed by Quade is relatively new and

therefore probably not well known, a more detailed description is appropriate.

Although Quade's nonparametric ANf.OVA is not restricted to use of a single con-

comitant variable, the present paper considers only the single concoultant vari-

able case. The restriction is made to facilitate comparison with our .arlier



investigation of Friedman's ANOVA on data in a randomized blocks design where

we considered only a single concomitant variable. The nonparametric analysis

of covariance test statistic is calculated by first replacing each observation

on the concomitant or covariable by its respective rank and each observation

on the dependent variable by its respective rank, where in both cases ranking

is done on all experimental units across all levels of the independent variable.

Each rank on the covariable is then replaced by its deviation from the mean of

ranks on the covariable, and each rank on the dependent variable is replaced by

its deviation from the mean of the ranks on the dependent variable. Disregarding

levels of the independent variable, least squares theory is used on the deviation

data to provide predicted deviations on the dependent variable. Because both

sets of deviation data have a mean of zero and common variance, the least squares

regression equation is

ay r d
TB

S XTB I

where r is the Spearman rank order correlation coefficient calculated on
the original rani, data ignoring levels of the independent
variable,

d denotes a deviation rank,

X denotes the covariable,

Y denotes the dependent variable,

T denotes the Tth level of the independent variable,

and B denotes the Bth replication within the Tth level of the inderuident
variable.

A new variable, say ZTB, is formed by subtracting each unit's predicted deviation

from its observed deviation,

ZTB dY
TB

ay
TB

'
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The new variable, ZTB, becomes the dependent variable for a one-way ANOVA F test.

The reference distribution for the F test statistic is the central F with degrees

of freedom equal to t - 1 and tb - t as tb

The only assumption that Quade's nonparametric ANCOVA has in common with

parametric ANCOVA is independence of units. The nonparametric ANCOVA further

assumes that the covariable has the same distribution in each population. The

identical covariable distributions assumption is necessarily met if observations

on the covariable are taken prior to the experiment and if simple random assign-

ment of units to levels of the independent variable is employed. The relaxation

of the need for a linear relationship between the dependent variable and covariable

to only a need for a monotonic relationship for nonparametric ANCOVA may be of

particular practical importance. It is also helpful to note that Quade's nonpara-

metric ANCOVA reduces to a Kruskal-Wallis test when the Spearman rank order cor-

relnkion is zero.

The question of goodness of fit of the three nonparametric test statistic's

sampling distributions to their large sample approximations must be answered em-

pirically. Their relative powers and comparisons of their powers to the powers

of their respective parametric analogues for small samples must also be answered

largely on an empirical basis; however, statements of Pitman asymptotic relative

efficiency are informative. Quade (1967) has shown that the asymptotic relative

efficiency of his nonparametric ANCOVA with respect to the Kruskal-Wallis test

is 1/(1-
2

Ps) where denotes the population Spearman correlation. Asymptotic

relative efficiency statements for Friedman with respect to Kruskal-Wallis and

nonparametric ANCOVA with respect to Friedman are not known.

When comparing the efficiency of nonparametric tests to their parametric

counterparts given the parametric assumptions, Andrews (1954) has shown that the

Kruskal-Wallis test has asymptotic relative efficiency of .955 with respect to
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the one-way ANOVA. Friedman (1937) has given the asymptotic relative efficiency

of his test relative to the two-way ANOVA as .637 when t equals 2 and .912 when

b equals 2. For other values of b and t the Friedman test has asymptotic relative

efficiency between .637 and .912 (Noether, 1967). When the number of blocks for

the Friedman test becomes large, its asymptotic relative efficiency with respect

to the two-way ANOVA is .955 ( t ). Quade (1967) demonstrated that his non-
tli

2
parametric ANCOVA has .955 (1 - p2

Y
)/(1 - p )

X
asymptotic relative efficiency

with respect to the parametric ANCOVA, where denotes the population cor-

relation of he dependent variable and the covariable and ps is the population

Spearman correlation. The relationship between the two coefficients is

pxy = 2 sin (nps/6),

given that X and Y have a bivariate normal distribution. It follods that the

asymptotic relative efficiency of nonparametric to parametric ANCOVA is greatest

when pxy = 0 and becomes less as the absolute value of pxy increases, having a

smallest value of .866.

Cox (1957) provides indices of true imprecision for two-way ANOVA of data

in randomized block form and parametric ANCOVA, which are instructive in choosing

among the two techniques on the basis of their statistical power. Cox defines an

index of true imprecision as the ratio of the average variance of the difference

of means for pairs of levels of the independent variables over the average variance

of the difference of means for pairs of levels of the independent variable if all

of the variance of the dependent variable accounted for by the concomitant variable

were removed. The index of true imprecision of two-way ANOVA on data in the type

of randomized block form of interest is

14

2
PXY

w,

71
XY

where W is the expected mean square of X within blocks divided by the variance
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of X. The index of true imprecision for parametric ANCOVA is

tb - t - 1
tb - t - 2

Based upon the above two statements of imprecision Cox concludes that where

p is less than .6, the randomized blocks design is to be preferred over
XY

ANCOVA; but where pxy is equal to or greater than .8, ANCOVA is to be pre-

ferred over randomized blocks. These statements do not reflect the differences

in number of degrees of freedom for the two parametric tests. When taken into

consideration the differences in degrees of freedom suggest that a one way

ANOVA will be more powerful than either ANCOVA or randomized blocks, and that

ANCOVA will Fe more powerful than randomized blocks when pxy = .0.

Although the above statements of asymptotic relative efficiency and true

imprecision provide no direct information about the small sample relative

powers of the technique being investigated, they are suggestive. In general

they suggest that given parametric assumptions the nonparametric techniques

should be expected to yield slightly less power than their parametric ana-

logues. Further, they suggest that as the absolute value of pxy increases

the power of the nonparametric ANCOVA should become progressively greater

than the power of the Kruskal-Wallis. By a more indirect argument they sug-

gest that Friedman ANOVA on data in randomized block form should be more

powerful than the Kruskal-Wallis test for fairly large absolute values of

Oxy. They are somewhat less suggestive of what to expect when comparing

the small sample powers of Friedman's test to those for nonparametric ANCOVA.

Monte Carlo studies were conducted to provide information about the

small sample properties of the sampling distributions of the Kruskal-Wallis

and one-way ANOVA test statistics when calculrted on data in a simple ran-

dom assignment design; the nonparametri,: ANCOVA and parametric ANCOVA test
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statistics when calculated on aata in a simple random assignment design with infor-

mation on an antecedent concomitant variable available; and Friedman's ANOVA

and two-way ANOVA when calculated on data in a randomized blocks design. Em-

pirical estimates of the probability of a Type I error (a) provide information

about the small sample goodness of fit for each of the three nonparametric

statistics. Empirical estimates of power provide data relevant to choosing

among the three nonparametric statistics, the three parametric statistics,

and are indicative of the difference in power of nonparametric and parametric

statistics when parametric assumptions are met.

Figure 1 presents an overview of the conditions under which each type

of sampling distribution was investigated. For each X in Figure 1, sampling

distributions for 1000 samples were generated for the central case, i.e.

Ho: true, and one noncentral case, i.e. Ha: true. The population distri-

butions indicated in Figure 1 were chosen to allow comparisons with the

results from our earlier study of the Kruskal-Wallis and Friedman tests.

Three values of t were investigated because of possible trends in the sampling

distributions as the number of levels of the treatment independent variable

increase. The smallest value of t was three since the Wilcoxon matched pairs

test offers a more powerful alternative to the Friedman when t equals two.

Three values of b were investigated 1ecause of possible trends in the sampling

distributions as the number of units under each level of the independent vari-

able increase. The smallest value of b was five since exact tests wou2d be

more appropriate for smaller values. Four values of the correlation between

the concomitant variable and the dependent variable were investigated to pro-

vide information on the relative small sample powers of three nonparametric

statistics, and to see if the interrelationships of their powers parallel the

better known interrelationships of the powers of their parametric analogues.
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Figure 1

CONDITIONS 0: THE DESIGNS INVESTIGATED

Pv

t b .0 .4 .b .8

3

5 X

8 X X X X

10 X

5

5

8 X

10

8

5

8 X

10

t = number of trentments

h = number of blocks

0 = the correlation between the concomitant variable and the
xy

dependent variable

X denotes a population investigated
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The smallest value of the correlation was zero, defining the situatioe. where

the three designs are essentially the same; and the largest value was .8 since

in practice correlations are infrequently larger. The non-central case was

created by adding the value one to the dependent variable value of each unit

under the first level of the treatment independent variable. For the three

nonparametric tests the noncentral case was crested pr:.or to forming ranks.

The non-central case was chosen because it seemed to represent a deviation

from the null hypothesis that most exFerimenters would wish to notice. Fur-

ther, it produced intermediate values of power which facilitated comparisons

of the various techniques.

All data generation and subsequent calculations were done on a Control

Data 3600 computer. A pseudo-random unit normal deviate was generated by

first generating random numbers from a uniform distribution by the multi-

plicative congruent method. By the Central Limit Theorem the svm of six-

teen of the above numbers is approximately noirnily distributed, and by a

linear resealing the sum becomes a pseudo-random unit normal deviate. In

this way 1,000 random samples of size tb each were generated for each pop-

ulation indicated in Figure 1. Each population had a bivariate normal dis-

tribution with known correlation between the concomitant and dependent vari-

ables, and each marginal distribution normal zero, one. Given a sample of

size tb, the data were then arrani,_e into simple random assignment and ran-

domized blocks designs.

Table 1 compares the empirical sampling distributions of the three non-

parametric tests when calculated on data in their respective appropriate designs

for t 3, b 8, and varying values of oxy. The data for Kruskal-Wallis ;nd

Friedman teats are taken iron our 1970 AERA paper (Porter and McSweeney, 1970).

lite three rows labeled central ' acate the goodness of fit of the empirical

12



distributions to their respective Chi Square and F reference distributions under

the null hypothesis. The standard errors of the proportions representing em-

pirical a's are approximately .009 for a = .10, .007 for a = .05, and .003 for

a = .01. The empirical and nominal values of a are in close agreement for all

three statistics with the greatest discrepancies at a = .10 for the Friedman.

As noted in our 1970 paper the largest discrepancies for the Fr.zdman are to

be expected since the empirical values are closer to the values from the exact

distribution of the Friedman test derived from permutation theory than are the

nominal values. The discrepancy between the exact and large sample approxi-

matioi distributions is reflecting the fact that the Friedman test statistic

is a discrete variable with fewer possible values than the Kruskal-Wallis

or nonparametric ANCOVAtests because of the difference in their methods of

ranking.

The three rows labeled non-central contain the empirical values of

power for the three nonparametric tests given that a common alternative hy-

pothesis was true. Their largest standard error of approximately .016 occurs

when power equals .5. As noted in our 1970 paper, the data clearly indicate

that the Kruskal-Wallis is more powerful than the Friedman ANOVA when pxy = .0.

The data further indicate that nonparametric ANCOVA is more powerful than the

Friedman ANOVA at all three levels of a when p = .0. Consistent with asymptotic
XY

theory the data are nut as clear when comparing nonparametric ANCOVA to the

Kruskal-Wallis. Kruskal-Wallis is seen to be slightly more powerful at a = .10,

.596 compared to .543; and a - .05, .437 compared to .418; but slightly less

powerful than nenparavetric ANCOVA for a - .01, .158 compared to .202, As pxy

increased the power of the Kruskal-Wallis remained relatively stable whereas

the powers of Friedman ANOVA and nonparametric ANCOVA were both strict mono-

tonic increasing functions of pxy for all three levels of a. when pxy > .4,
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the power of nonparametric ANCOVA was greater than the power of Kruekal-Wallis

and Friedman for all three levels of a. As noted in our 1970 paper, the data

make no clear distinction on the basis of power between Kruskal-Wallis and

Friedman ANOVA when correlation is .4. When the correlation is .6 or .8,

Friedman was clearly more powerful than Kruskal-Wallis. There was a slight

tendency for the nonparametric ANCOVA to become progressively more powerful

than the Friedman ANOVA as pxy increased. When the empirical power of the

Friedman ANOVA is subtracted from that of the nonparametric ANCOVA for in-

creasing values of pxy, the differences for a = .10 are .015, .013, .028,

.064; for a = .05 are .086, .091, .162, .120; and for a = .01 are .007, .082,

.112, .168. The values of pxy were .0, .4, .6, and .8 respectively.

Table 2 compares the empirical sampling distributions of the three para-

metric tests when calculated on data in their respective appropriate designs

for t = 3, b 8 and varying values of pxy. As should be expected, the three

rows labeled central indicate very good fit for all levels of a. The one

exception is one-way ANOVA with pxy = .6, which resulted in empirical a's .010

too large for all three nominal values of a.

The empirical posers indicate that when pxy = .0, one-way ANOVA is more

powerful than ANCOVA for all three levels of a. One way ANOVA is also more

powerful than two-way ANOVA on data in randomized block form for ri .05, .458

compared to .453; and .01, .210 compared to .199; but less powerful for a = .10,

.584 compared to .598. As pxy increased the power of one-way ANOVA remained

relatively stable, whereas the powers of two way ANOVA and .114COVA were both

strict monotonic increasing function of pxy for all three levels of a. Per-

haps the most interesting power comparisons are between two way ANOVA and ANCOVA.

The empirical powers are only partially in support of Cox's (1957) statements

cited earlier in the paper. For pxy = .0 the comparisons are not of interest
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since one-way ANOVA is preferred. When pxy = .4, two-way ANOVA was more power-

ful than ANCOVA when a = .10, .645 compared to .625; but less powerful when

a = .05, .502 compared to .504; and a = .01, .223 compared to ,239. As pxy increased

from .4, ANCOVA increased in power at a faster rate than two uay ANOVA for all

three levels of a with the differential rate of increase in rower being most

noticable for a = .01.

Taken together, Tables 1 and 2 afford a comparison of nonparametric

techniques to their parametric analogues. As was expected, the empirical a's

in Table 2 are in general slightly closer to their respective nominal values

than are the empirical a's in Table 1. This finding reflects the discreteness

of the nonparametric test statistics. As was suggested by the statements of

asymptotic relative efficiency presented earlier, there was a greater loss in

power going from the two way ANOVA to the Friedman than there was going from

the one way ANOVA to the Kruskal-Wallis or from the parametric ANCOVA to the

nonparametric ANCOVA. The earlier statements of asymptotic relative efficiency

also suggested that as pxy increased the nonparametric ANCOVA would become

increasingly less powerful than the parametric ANCOVA. When the empirical power

of nonparametric ANCOVA is subtracted from that of parametric ANCOVA for in-

creasing values of pxy, the differences for a = .10 are .025, .031, .045, .043;

for a .05 are .023, .037, .062, .063; and for a = .01 are-.004, .010, .041,

.098.

Table 3 provides average mean square errors and their standard error:

for nonparametric ANCOVA, one and two way ANOVA, and parametric ANCOVA for

t = 3, b = 8 and varying values of pxy. For all statistics but one way ANOVA

the average mean square error decreased as pxy increased which is reflected

in the power trends reportzd for Tables 1 and 2. For the parametric statistics

the values are identical for the central end noncentral cases. The expected

17
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value of the mean square error for ANOVA is one for all values of pxy and in

each case the empirical values were very close to one. The expected value of

2
the mean square error for parametric ANCOVA is (1 - pvv" ) 20 when t = 3 and

19

b = 8, and again 1.n each case the empirical values were in cloLe agreement with

the expected values. When pxy = .0 the expected value of the mean square error

for two way ANOvA is one and tb-t-1 for ANCOVA. As p
XY increased from .0, the em-

1-

pirical average mean square errors for parametric ANCJVA decreased in size at

a faster rate than those for two-way ANOVA. Although the average mean square

error for pf,rametric ANCOVA, .8352, was smaller than the average mean square

error for 'two way ANOVA, .8509, when pxy = .4, there was no clear difference

in their empirical powers as reported earlier in reference to Table 2. For non-

parame/ric ANCOVA the noncentral average mean square error was smaller than the

central average mean square error for all values of pxy. This result is ex-

plefined by the nature of the dependent variable. For the central case the de-

vndent variable ranks 1 through tb are evenly distributed across levels of

the independent variable. When the noncentral case is analyzed, the larger ranks

(when observations are ranked from s. 'lest to largest) tend to be in the

group whose raw data values on the dependent variable were all increased by

one. It follows that the variance of the ranks in the group whose values were

increased by one will be reduced and the within groups variance of ranks for

the other levels of the independent variable also wil, be reduced but to a

lesser extent.

Table 4 presents the average correlations of the antecedent and depen-

dent variables within treatment groups, pw, and across all ranked observations,

Ps, for the populations investigated. ow is the same for both the central and

noncentral cases and is in close agreement with its population value pxy. Ex-

cept for pxy ° .0 the central case values of ps have corresponding population

19
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values less than p
Xi

as indicated by the relationship given earlier between

Pearson Product-Moment and Spearman correlation coefficients. The decrease in

magnitude is .015 for pxy = .4, .018 for pxy = .6, and .014 for pxy = .8. The

empirical values of ps were in general agreement with their corresponding param-

eters. Except for pxy = .0, the noncentral values of os were smaller than their

respective central values. There are two reasons for this finding. First, ps

is the average of Spearman correlations calculated disregarding levels of the

independent variable rather than the average of pooled within levels coefficients.

Second, the noncentral rank data has the restriction placed on it that was given

earlier as an explanation of the difference between central and noncentral average

mean square errors for nonparametric ANCOVA.

Table 5 compares the three nonparametric test statistics for pxy= .6, b = 8

and varying values of t. The central case empirical distributions again indicate

general good fit for all three test statistics, with a slight tendency to be

conservative at a = .05 and .01 except for nonparametric ANCOVA at t = 3 and

a = .01. Inspection of the three rows labeled noncentral indicates that all

three statistics lost power as t increased which is understandable from the

method used to define the noncentral case. Nonparametric ANCOVA for all levels

of a and Friedman ANOVA for a = .05 tended to lose power at a slower rate than

Kruskal-Wallis. When the empirical power of the Kruskal-Vallis is subtracted

from that of the nonparametric ANCOVA for increasing values of t, the differences

for a = .10 are .121, .160, .204; for a = .05 are .155, .187, .219; and for

a = .01 are .166, .180, .179. Kruskal-Wallis powers subtracted from Friedman

ANOVA powers for increasing values of t give differences for a = .10 of .093,

.095, .049; for a = .05 of .025, .080, .118; and for a = .01 of .054, .031,

.051. Nonparametric ANCOVA and Friedman ANOVA tended to lose power at the

same rate for increasing values of t with nonparametric ANCOVA the more

21



T
A
B
L
E
 
5

E
M
P
I
R
I
C
A
L
 
P
R
O
P
O
R
T
I
O
N
S
 
O
F
 
K
R
U
S
K
A
L
-
W
A
L
L
I
S
 
(
K
W
)
,
 
F
R
I
E
D
M
A
N
 
(
F
r
)
 
A
N
D

N
O
N
P
A
R
A
M
E
T
R
I
C
 
A
N
C
O
V
A
 
(
N
C
)
 
T
E
S
T
 
S
T
A
T
I
S
T
I
C
S
 
F
A
L
L
I
N
G
 
I
N
 
T
H
E
I
R

R
E
S
P
E
C
T
I
V
E
 
R
E
G
I
O
N
S
 
O
F
 
R
E
J
E
C
T
I
O
N
 
F
C
R
 
a
 
=
 
.
1
0
,
 
.
0
5
,
 
.
0
1
;

:
x
y
 
=
 
.
6
;
 
b
 
=
 
8
;
 
t
 
=
 
3
,
 
5
,
 
8

t
 
=

3
5

8

a
K
W

F
r

N
C

K
W

F
r

N
C

K
W

F
r

-
-
-
-
-
-
.
.
.
.
.
,

N
C

C
e
n
t
r
a
l

.
1
0

.
0
9
3

.
1
0
9

.
1
0
3

.
0
9
7

.
0
9
7

.
1
0
0

.
0
9
4

.
0
9
1

.
1
1
0

.
0
5

.
0
3
9

.
0
3
9

.
0
5
8

.
0
4
8

.
0
5
3

.
0
4
5

.
0
4
0

.
0
3
6

.
0
4
6

.
0
1

.
0
0
4

.
0
0
6

.
0
1
5

.
0
0
4

.
0
0
5

.
0
0
3

.
0
0
0

.
0
0
5

.
0
0
5

N
o
n
-
C
e
n
t
r
a
l
*

.
1
0

I

.
5
9
4

.
6
8
7

.
7
1
5

.
5
3
5

.
6
3
0

.
6
9
5

.
4
3
9

.
5
8
8

.
6
4
3

.
0
5

.
4
2
8

I
.
4
5
7

.
5
8
3

.
3
7
6

.
4
5
6

.
5
6
3

.
2
9
5

.
4
1
3

.
5
1
4

.
0
1

.
1
5
8

.
2
1
2

.
3
2
4

.
1
2
5

.
1
5
6

.
3
0
5

.
0
8
5

.
1
3
6

.
2
6
4

T
h
e
 
n
o
n
-
c
e
n
t
r
a
l
 
c
a
s
e
 
w
a
s
 
u
 
m
l

u
 
=
0

1
 
"
 
2
'

'
t



-16-

power:u1 for all values of t and all levels of a. The data also indicate that

nonparametric ANCOVA an-1 Friedman ANOVA are more powerful than Kruskal-Wallis

when p = .6, b = 8 and all values of t.
XY

Table 6 compares the three parametric tests for Pxy = .6, b = 8 and

varying values of t. Again as was tc be expected the parametric tests indi-

cated slightly better fit of empirical a's to nominal a's with the previously

noted exception of one way ANOVA when t = 3. The empirical power comparisons

among the parametric test statistics in Table 6 are roughly parallel to those

reported for the nonparametric tests in Table 5. All three parametric tests

lost power for increasing values of t. There was a tendency for ANCOVA to

lose power at a slightly slower rate than one way ANOVA at a = .10 and .05

for increasinr values of c. When the empirical power of one way ANOVA is

subtracted from that of ANCOVA for increasing values of t, the differences

for a = .10 are .149, .180, .192; for a = .05 are .163, .174, .181; and for

a = .01 are .149, .151, .132. However, in mild contrast to the results for

nonparametric statistics the data do not suggest a differential rate of loss

in power when comparing two way and one way ANOVA. ANCOVA and two way ANOVA

tend to lose power pt the same rate for increasing values of t. Contrary to

the results for nonparametric statistics, there was no clear difference in

power between ANCOVA and two way ANOVA when pm = .6. For t = 3 and 8 at all

three levels of a, ANCOVA was slightly more powerful thin two way ANOVA. The

reverse was true for t = 5 at all three levels of u. For per, = .6, b = 8 at

all three levels of t, ANCOVA and two way ANOVA on data in a randomized blocks

design were clearly more powerful than one way ANOVA which is consistent with

the nonparametric results.

The loss in per suffered by using a nonparametric test when the as-

sumptions for its parametric analogue are met is seen by comparing Table 5 to

23
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Table 6. The results are closely parallel to those reported earlier when com-

paring the nonparametric powers in Table 1 to the parametric powers in Table 2.

Again the loss was relatively small and quite similar for Kruskal-Wallis and

nonparametric ANCOVA. For all values of t and all levels of a the Friedman

ANOVA auffered the greatest loss when compared to its parametric analogue,

which is consistent with asymptotic theory. However, the amount of loss did

not decrease with increasing values of t as might have been expected from

asymptotic theory.

Table 7 presents nonparametric ANCOVA, one and two way ANOVA, and ANCOVA

average mean square errors and their standard errors for pxy . .6, b 8, and

varying values of t. The parametric values were the same for both central and

noncentral cases and the nonparametric ANCOVA values were systematically smaller

in the noncentral case for the fame reasons given earlier when discussing the

results in Table 3. For all levels of t the average mean square errors for one

way ANOVA and ANCOVA are very close to their expected values. Consistent with

theory, the average mean square errorS for two way ANOVA are less than those

for one way ANOVA but slightly larger than those for ANCOVA. The increasing

values of the average mean square errors fnr nonparametric ANCOVA as t in-

creased can be understood by remembering that the variance of ranks must in-

crease es the number of units being ranked increases.

Table 8 compares the three nonparametric test statistics for pxy = .6,

t 0 3, and varying values of b. The three rows labeled central indicate good

fit for the three statistics with the results indicating the Friedman ANOVA to

be slightly liberal at b . 5 and a . .10 and the nonparametric ANCOVA to be

slightly liberal at a . .01 for all values of b. The three rows labeled non-

central indicate that all three tests increased in power as the values of b

increased. The data suggest that nonparametric ANCOVA and Friedman ANOVA
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increase in power at a faster rate than Kruskal-Wallis as varies of b increase.

When the empirical power of the Kruskal-Wallis is subtracted from that of the

nonparametric ANCOVA for increasing values of b, the differences for a = .10

are .124, .121, .153; for a = .05 are .108, .155, .179; and for a = .01 are

.091, .166, .222. Kruskal-Wallis powers subtracted from Friedman ANOVA powers

for increasing values of b give differences for a = .10 of .114, .093, .045;

for a = .05 of .013, .029, .063; and for a = .01 of -.027, .054, .090. The

data indicate a slight tendency for nonparametric ANCOVA to increase in power

at a rate faster than Friedman ANOVA for increasing values of b with nonparamet-

ric ANCOVA the more powerful for all values of b and all levels of a. When

the empirical power of the Friedman ANOVA is subtracted from that of the non-

parametric ANCOVA for increasing values of b, the differences for a = .10 are

.010, .028, .108; for a = .05 are .095, .126, .116; and for a = .01 are .118,

.112, .132. Again nonparametric ANCOVA and Friedman ANOVA are more powerful

than the Kruskal-Wallis when pxy = .6, t = 3, and varying values of b with

the one exception of Friedman ANOVA when b = 5 and a = .01. For all popu-

lations represented in Table 8, the nonparametric ANCOVA was more powerful than

the Friedman ANOVA.

Table 9 compares the three parametric test statistics for pxy = .6, t = 3,

and varying values of b. The empirical a's presented in the rows labeled cen-

tral indicate good fit with the same exception noted earlier of one way ANOVA

when b = 8. Again the parametric results closely parallel the corresponding

nonparametric results in Table 8. All three statistics increased in power as

the values of b increased. Both ANCOVA and two way ANOVA increased in power

at a faster rate than one way ANOVA for increasing values of b. When the empiri-

cal power of the one way ANOVA is subtracted from that of ANCOVA for increasing

values of b, the differences for a n .10 are .143, .149, .147; for a = .05 are

28
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.105, .163, .216: and for a = .01 are .045, .149, .213. One way ANOVA powers

subtracted from two way ANOVA powers for increasing values of b give die-

ferences for a = .10 of .094, .125, .137; for a = .05 of .C79, .124, .195;

and for a = .01 of .043, .104, .190. ANCOVA and two way ANOVA on data in

a randomized blocks design increased in power at about the same rate for in-

creasing values of b with ANCOVA the more powerful for all values of b and

all levels of a. For oxy = .6, t = 3, and all values of b, ANCOVA and two

way ANOVA were both more powerful than one way ANOVA.

A comparison of the nonparametric empirical powers in Table 8 with the

parametric empirical powers in Table 9 indicates the same relationships as

similar earlier comparisons had shown for Tables 1 and 2 and Tables 5 and 6.

The difference in power is relatively small for Kruskal-Wallis versus one way

ANOVA and nonparametric ANCOVA versus parametric ANCOVA, but quite substantial

for Friedman versus two way ANOVA.

Table 10 presents nonparametric ANCOVA, one and two way ANOVA, and ANCOVA

average mean square errors and their standard errors for p
KY

= .6, t = 3, and

varying values of b. The parametric values were the same for both central and

noncentral cases and the nonparametric ANCOVA values were systematically smaller

in the noncentral case for the same reasons given earlier when discussing the

results in Tables 3 and 7. The increasing values of the average mean square

errors for nonparametric ANCOVA as b increases are understood by the same

reason give) for their having increased with increasing values of t in Table 7.

Again for all levels of b, the average mean square errors for one way ANOVA and

ANCOVA are very close to their expected values. The average mean square error

for two way ANOVA decreased with an increase in the number of blocks as was

suggested by Cox'i statement of true imprecision given earlier.
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The purpose of the present paper was to extend understanding of the relative

merits, when nonparametric statistics are used, of a simple random assignment

design s-ithout benefit of data on an antecedent concomitant variable, a simple

random assignment design with information on an antecedent concomitant variable

which is linearly relLted to the dependent variable, and randomized blocks de-

sign. Interest also centered on the small sample goodness of fit properties

of the Kruskal-Wallis, mmparametric ANCOVA, and Friedman ANOVA test statistics

which are appropriate for the designs investigated. The data from our earlier

study suggested that the randomized blocks design analyzed by Friedman's ANOVA

is a successful method for improving power over that for a simple random assign-

ment design analyzed by the Kruskal Wallis when the correlation between the

blocking variable and the dependent variable is greater than .4. When the cor-

relation is equal to .4, power is not a relevant dimension for cloosing between

the two designs and when correlation is zero the simple random assignment design

analyzed by the Kruskal-Wallis is the more powerful. Data from the present study

indicate that Quade's recently proposed nonparametric ANCOVA on data in a simple

random assignment design is more powerful than Friedman's ANOVA on data in a

randomized blocks design for all values of the correlation between the concomi-

tant variable and dependent variable. Further the nonparametric ANCOVA is

equal in power to the Kruskal-Wallis when pixy .0, but becomes progressively

more powerful than the Kruskal-Wallis for increasing valves of pixy.

The data suggest similar statements for parametric statistics with a few

notable exceptions. Two way ANOVA on data in a randomized blocks design was

more powerful than one way ANOVA on data in simple random assignment design

when the correlation between the blocking variable and the dependent variable

was equal to or greater than .4. The data also indicate ore way ANOVA as more

powerful than ANCOVA for pixy = .0. Further, the power of ANCOVA and two way

32
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ANOVA were similar for p = .4 and ANCOVA was more powerful than two-way ANOVA
XY

for pxy > .6. When comparing the power of the three nonparametric statistics

to their parametric analogues where parametric assumption are met, one-way ANOVA

and ANCOVA were only slightly more powerful than the Kruskal-Wallis and non-

parametric ANCOVA respectively, but two way ANOVA was considerably more powerful

than the Friedman ANOVA.

The implications are that when information is available on an antecedent

variable which has a monotonic relationship with the dependent variable and non-

parametric statistics are to be employed, nonparametric ANCOVA is a better method

for increasing power than is a randomized blocks design. However, a randomized

blocks design may still be useful for improving power in experiments where the

antecedent concomitant variable is measured on a nominal scale and nonparametric

statistics are to be used. The data indicated that parametric ANCOVA became

progr.tsilively more powerful than nonparametric ANCOVA as pxy increased; it should

be remembered that nonparametric ANCOVA needs only a monotonic relationship

between the covariable and dependent variables to be effective. In situations

where the rank order correlation exceeds the Pearson-Product moment, the non-

parametric ANCOVA may well be more powerful than parametric ANCOVA.

In general the data for the parametric tests were consistent with the

literature. Our results indicate that simple random assignment analyzed by one

way ANOVA is to be preferred when pxy= 0. For pxy = .4 there was no clear

difference in power between ANCOVA and two-way ANOVA on data in randomized blocks

design, but either is to be preferred over ANOVA. However, the literature has

suggested that randomized blocks design would be more powerful than ANCOVA for

o
XY

= .4. The data also suggest that ANCOVA is to be preferred over randomized

blocks design analyzed by two way ANOVA for values of pxy = .6 and that ANCOVA

is clearly the more powerful for pxy = .8.
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All three ronparametric and all three parametric methods increased in power

with an increase in sample size, Nonparametric ANCOVA and Friedman ANOVA gained

power at a faster rate than the Kruskal-Wallis, and parametric ANCOVA and two

way ANOVA gained power at a faster rate than one way ANOVA. There was a slight

tendency for nonparametric ANCOVA to gain power at a faster rate than the Friedman,

but parametric ANCOVA and two way ANOVA gained power at the same rate. All three

nonparametric and all three parametric methods lost power as the number of levels

of the independent variable increased as was to be expected from the manner in

which the noncentral case was defined.

For three or more levels of the independent variable and five or mare

replications per level the empirical and nominal levels of a were in close agree-

ment for all three nonparametric tests. The empirical a's for the Kruskal-Wallis

and Friedman tests tended to be slightly conservative except for t equal to thre,

and b less than ten at a equal to .10. The empirical a's for the nonparametric

ANCOVA were slightly liberal for t equal to three and u equal to .01. For designs

of smaller dimensions exact tests should be used.
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